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Abstract

Shared autonomy refers to approaches for en-
abling an autonomous agent to collaborate with
a human with the aim of improving human per-
formance. However, besides improving perfor-
mance, it may often be beneficial that the agent
concurrently accounts for preserving the user’s
experience or satisfaction of collaboration. In or-
der to address this additional goal, we examine
approaches for improving the user experience by
constraining the number of interventions by the
autonomous agent. We propose two model-free
reinforcement learning methods that can account
for both hard and soft constraints on the number
of interventions. We show that not only does our
method outperform the existing baseline, but also
eliminates the need to manually tune an arbitrary
hyperparameter for controlling the level of assis-
tance. We also provide an in-depth analysis of
intervention scenarios in order to further illumi-
nate system understanding.

1. Introduction
Human-AI collaboration forms an integral part of advancing
science in domains where neither advances in independent
AI nor human experts are able to fully realize the solution to
a problem. Synergistic systems for control between humans
and autonomous systems thus span a vast spectrum, rang-
ing from safety critical systems such as aircraft operations
(Matni & Oishi, 2008), semi-autonomous driving (de Winter
& Dodou, 2011), and UAV control (Backman et al., 2021),
to robotics tasks for assistive eating (Jeon et al., 2020), drink-
ing (Schröer et al., 2015), wheelchair control (Erdogan &
Argall, 2017; Trieu et al., 2008), and other teleoperation
tasks (Kofman et al., 2005; Aarno et al., 2005). Human-AI
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collaboration has also shown promising advances in mi-
crosurgery (Kragic et al., 2005), brain-computer interfaces
(Muelling et al., 2017; Shanechi et al., 2016; Kim et al.,
2006), myoelectric devices (Pilarski et al., 2011), and in
leisure applications (e.g., enabling people with disabilities
to enjoy playing Xbox video games (Xbox, 2018)).

Shared autonomy provides a framework to allow human and
autonomous agent interact congruently to improve perfor-
mance at the task, while still allowing the human to maintain
control (Abbink et al., 2018). Several prior works on shared
autonomy rely on specific knowledge of the environment’s
dynamics, the ability to model them accurately (Gopinath
et al., 2017; Javdani et al., 2018; Backman et al., 2021), or
having data a priori in order to determine the goals of the
collaborating human (Reddy et al., 2020; 2018b; Carroll
et al., 2019; Javdani et al., 2016). However, for many tasks
the computational dynamics model may be unavailable, or
determining user goals accurately in advance of system de-
sign may not be feasible. Therefore, similar to the works by
Reddy et al. (2018a), Schaff & Walter (2020), and Du et al.
(2020) we focus on a model-free approach and do not aim
to model user’s goals.

An important aspect not addressed by the aforementioned
prior works is how to allow humans to use the full depth
of their expertise towards achieving their goals. In other
words, the agent should assist the human minimally or in-
tervene only when necessary, while also ensuring that the
human achieves optimal performance. This consideration is
especially important in domains such as assistive robotics
(Javdani et al., 2018; Gopinath et al., 2017; Erdogan & Ar-
gall, 2017) where patients may want to feel as independent
as possible while performing the task at hand (Verdonck
et al., 2011; Palmer et al., 2005), or in AI assisted employee
training (Seo et al., 2021) where the AI agent is expected
to gradually reduce assistance to ensure the user is learn-
ing the objective. Our work focuses on addressing this gap
by incentivizing the agent to minimize interventions, while
making sure that the human-agent collaboration achieves
near-optimal performance.

We introduce two new, model-free reinforcement learning
methods: one based on soft-constraints and the other based
on hard-constraints on the number of interventions permit-
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Figure 1. Overview of the proposed human in the loop reinforce-
ment learning framework.

ted by the agent. In the cases where the user is flexible in
the number of interventions acceptable, the soft constraint
method provides an approach to consider an intervention
penalty along with the reward function, and solves it using
the dual formulation (Puterman, 2014). On the other hand,
if a user desires strict upper-bounds on the acceptable num-
ber of interventions, the hard constraint method provides a
procedure to include the intervention constraint directly in
the state representation ensuring that the constraint is never
violated.

To benchmark our algorithms, we conduct experiments us-
ing simulated human agents in the Lunar Lander (Brockman
et al., 2016) environment. We show that our method outper-
forms the previous baseline (Reddy et al., 2018a) in terms
of intervention rate and environment returns. Finally, we
also provide analysis of the states where the agent takes
control as an additional means of validation of the proposed
methods.

2. Related Work
Shared Autonomy. In shared autonomy, the control of a
system is shared by human and agent to accomplish a com-
mon goal. Earlier works assumed that the agent is aware
of the common goal (Crandall & Goodrich, 2002; Kofman
et al., 2005; You & Hauser, 2012). However, this is a strong
assumption, and as a result recent works have proposed
agents that can infer the user’s intent and predict the user’s
goal from the user’s action and environment dynamics. They
do so by formulating this problem as a partially observable
Markov decision process (POMDP). Bayesian inference
(Javdani et al., 2018; Muelling et al., 2017; Sadigh et al.,
2016; 2018), inverse reinforcement learning (Ng et al., 2000;
Ratliff et al., 2006; Levine & Koltun, 2012) and hindsight
optimization (Javdani et al., 2015) are the most common
approaches to predicting the user’s goal in this formula-
tion. These approaches are based on an assumption that
the environment dynamics, the goal space, and the user’s
policy are known to the agent, which is often violated in
practice. Reddy et al. (2018a) proposed a model-free shared
autonomy framework to relax these assumptions and for-
mulate the problem as a Markov decision process (MDP).

This method does not require prior knowledge of environ-
ment dynamics, the human’s policy, the goal space, and goal
representation. Instead, it uses human-in-the-loop reinforce-
ment learning with functional approximation to formulate a
policy for the agent learned only from environmental obser-
vation and user input.

Intervention optimization. In the setting of user assis-
tance, there are only a few works that emphasise the in-
fluence of the assistive agent on the user. An agent that
intervenes too often will reduce a user’s advocacy and ulti-
mately affect their experience in the system.To tackle this
challenge, Reddy et al. (2018a) employed deep Q-learning
to train the assistive agent. Instead of taking the action with
the highest q-value, they first sort the actions in terms of
similarity to the user provided action, in descending order,
using an action-similarity function. A final action is then
selected as the one that is closest to the user’s action while
ensuring its q-value is not significantly worse than the opti-
mal action. This action selection addresses the intervention
problem implicitly. By tuning the tolerance of the system to
suboptimal human suggestions, which is a hyperparameter,
this method can provide different levels of assistance. How-
ever, designing such an action-similarity function makes
this approach an environment-dependent problem. Broad
et al. (2019) proposed to minimize the interventions in a
similar way. They accept the user’s action only when it
is close enough to the optimal action as determined by an
optimal controller. However, developing such an optimal
controller may require complete knowledge of the environ-
ment dynamics and the user’s goal. Schaff & Walter (2020)
formulate the problem as a constrained MDP where they
consider minimizing the amount of interventions an agent
makes, subject to the returns of the agent’s learned policy
being greater than a given constant. In contrast, our work
describes a method to maximize returns of the human-AI
collaboration, subject to the number of interventions taken
being less than a given constant.

3. Method
We first introduce the problem setup based on the shared
autonomy framework (Reddy et al., 2018a). We then present
our proposed methods that enable the agent to optimize the
frequency of interventions, while maximizing the collabora-
tive performance. Our method is model-free and does not
assume the knowledge of the environment dynamics, the
goal space, or, the user’s policy.

Shared autonomy can be formulated as a MDP, given by a
tuple {S,Ah,Aa, T ,R, γ}, where S is the set of environ-
ment states and Ah is the set of actions that can be taken
by the human. The set of actions available to the agent
is denoted using Aa. Dynamics, the reward function, and
discount factor are represented using T , R and γ, respec-
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tively. Before choosing an action according to its policy,
the agent observes both the environment state s ∈ S and
the user’s action ah ∈ Ah. Therefore, the effective set
of states for the agent is S = S × Ah, and, we define
an instance of this set as s := [s, ah], a simple concate-
nation. The MDP that our agent acts in then can be for-
malized asM = {S,Aa, T ,R, γ}, where T (s, aa, s′) =
T (s, aa, s′)πh(s′, ah

′
), where aa ∈ Aa, and, πh is the pol-

icy of the human user. The goal of the agent is to find the op-
timal policy π∗a that maximizes the expected discounted sum

of rewards: π∗a = argmax
πa

Eπ
[∑T

t=0 γ
tR(st, at)

]
. We pro-

vide an overview of the proposed agent-human-environment
interaction in Figure 1.

3.1. Hard Constrained Shared Autonomy

A simple way to control the level of assistance is to limit
the discrete amount of instances where the assistive agent
can intervene, or override user’s input in an episode. Thus,
we propose to set a budget, which is the maximum number
of times an agent can intervene in an episode, as a hard
constraint to limit the behaviour of agent. When the budget
is greater than 0, the agent can take any corrective action.
However once the budget is exhausted, the agent is only
able to accept the user’s action. Furthermore, if the agent
still attempts to intervene, we add a penalty to the reward in
order to reinforce the need for the agent to assist optimally
while there is a remaining budget.

We introduce budget as part of the environment observed
by the agent. The hard constrained shared autonomy
MDP can be formalized as Mb = {Sb,Aa, Tb,Rb, γ},
where sb ∈ Sb := [s, ah, b], Tb(sb, aa, sb

′
) =

T (s, aa, s′)πh(s′, ah
′
)P(b′|b, aa, ah). The reward function

Rb is defined in the following equation:

Rb(sb, aa, sb
′
) = R(s, aa, s′)−

{
λ b = 0 and aa 6= ah

0 else

Here, the hyperparameter λ ≥ 0 refers to the penalty
for intervening after the budget is exhausted. The goal of
the agent is still to find the optimal policy π∗a that max-
imizes the expected discounted sum of rewards: π∗a =

argmax
πa

Eπ
[∑T

t=0 γ
tR(sbt , at)

]
. We refer to this method as

the budget method in the rest of the paper.

3.2. Soft Constrained Shared Autonomy

In hard constrained shared autonomy, we gave the agent an
intuitive constraint of a maximum number of interventions.
This introduces the problem of balancing utility of the agent
and the preservation of user’s experience manually using
the budget. The optimal budget can be difficult to estimate
depending on the environment. Hence, we now relax this
hard constraint, and, instead penalize the agent for every in-
tervention it takes, compared to the previous method where

we start penalizing the agent only after the exhaustion of the
budget. In certain use cases, it may be beneficial to not have
a hard cap on the number of interventions. The magnitude
of the penalty establishes a trade-off between the increased
reward accumulated by intervening over the human action,
and the penalty associated with doing so. As with hard con-
strained shared autonomy, we introduce a modified reward
function:

R(s, aa, s′) = R(s, a, s′) +Rpenalty(s, a
a), (1)

where Rpenalty(s, a
a) =

{
0 ah = aa

−λ ah 6= aa

where λ ≥ 0 and Rpenalty penalizes the agent for
intervening. Using R, shared autonomy can be recast
into the standard reinforcement learning setup. The
MDP of the penalty method can be formalized as M =
{S,Aa, T ,R, γ}. The goal of the agent is to find the op-
timal policy π∗a that maximizes the expected discounted
sum of rewards with the modified reward function: π∗a =

argmax
πa

Eπa

[∑T
t=0 γ

tR(st, at)
]
.

Intuitively, λ is a hyperparameter that encodes the trade-off
between performance and the user’s willingness to receive
assistance from the agent. A large λ discourages the agent
from intervening, but limits the agent’s capability as a con-
sequence. In contrast, a small λ encourages the agent to
intervene more which might enable greater performance,
but at the cost of potentially interrupting user’s experience
more often. However, choosing an optimal value for λ is
not intuitive and also varies significantly according to the
environment and the scale of rewards. Instead of leaving
the user to fine-tune this sensitive hyperparameter, we pro-
pose a method to automatically optimize λ using a dual
formulation (Haarnoja et al., 2018).

Our objective is to find a optimal policy that maximizes
expected return while satisfying a minimum expected inter-
vention constraint. Note that we do not discount rewards
as it would result in discounting the intervention penalty as
well. We cannot justify this approach in our use case as it is
unreasonable to allow for more interventions as an episode
grows longer. Formally, we want to solve the following
constrained optimization problem

π∗a = max
πa

Eπa,πh

[
T∑
t=0

r(st, at)

]
s.t. Eπa,πh

[
T∑
t=0

I(aat , a
h
t )

]
≤ c

(2)

where we define I(aa, ah) =

{
1 aa 6= ah

0 aa = ah
as an indicator

variable for the occurrence of an intervention. Written as a
Lagrangian, we obtain the following constrained objective:

max
πa

min
λ≥0

Eπa,πh

[
T∑
t=0

r(st, at) + λ

(
c−

T∑
t=0

I(aat , a
h
t )

)]
(3)

According to the preceding equation, we would require an
entire episode to be able to evaluate the amount of interven-
tions that occur based on our constraint c. If we wish to
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optimize at every timestep, we can rewrite the constraint
to be a linear function of time: c′ = c

t . In the case of in-
terventions, this can be thought of as the intervention rate.

max
πa

min
λ≥0

Eπa,πh

[
T∑
t=0

(
r(st, at) + λ

(
c′ − I(aat , aht )

))]
(4)

We perform the maximization of π using a model-free
RL algorithm such as DDQN (Hasselt et al., 2016) or SAC
(Haarnoja et al., 2018), while we optimize λ using stochastic
gradient descent where the update for each time-step is
written as follows. Note that the reward term does not
depend on λ.

λ← λ− α∇λ
(
r(st, at) + λ

(
c′ − I(aat , aht )

))
(5)

λ← λ− α(c′ − I(aat , aht )) (6)

We refer to this method as the penalty adapting method. At
each timestep we update the policy, and then additionally
perform a single gradient step on the dual variables. This
does not give us an exact solution to the dual problem which
is impractical to solve in RL. However, we find that this ap-
proach works in practice to automatically tune λ according
to the constraint on interventions. Automatically tuning the
penalty can be considered optional if the user desires to set
it manually and we provide experimental results with and
without it. We refer to the method without penalty adapting
as simply the penalty method.

4. Experiments
In this section we evaluate the performance of our methods
on the popular Lunar Lander environment using different
simulated users. The goal of our experiments is to test the
central hypothesis that the proposed methods can provide
varying levels of assistance to improve the user’s perfor-
mance.

Lunar Lander: A 2D simulation game from OpenAI Gym
(Brockman et al., 2016). The goal of the game is to control
the engines of a lunar lander spacecraft to land at a desig-
nated landing zone without crashing the spacecraft. Each
episode lasts at most 1000 steps. It provides a choice be-
tween discrete and continuous action spaces for the pilot to
control. For the two-dimensional discrete action space, it
consists of six discrete actions that are combinations of the
main engine {on, off} and the lateral engines {left, right,
off}. For the continuous action space version, the pilot can
fire each engine at any power level. The state space is 8
dimensional: position, velocity, angular position, angular
velocity, and whether or not each leg is in contact with
the ground. The reward function penalizes speed, tilt, fuel
usage, and crashing while rewarding landing at the target
location.

Lunar Lander
Tolerance [0, 0.1, 0.2, 0.3, 0.4, ..., 1]

Budget [0, 25, 50, 75, .., , 500, 1000]
Penalty (10−2) [0, 1, 2, 5, 10, 20, 50, ..5000]

Intervention Rate [0, 0.1, 0.2, 0.3, 0.4, ..., 1]

Table 1. The hyperparameters that the methods use to train on
Lunar Lander. Tolerance for the baseline method, budget for the
budget method, penalty for the penalty method and intervention
rate for the penalty adapting method.

As our work is closely related to (Reddy et al., 2018a),
we use their methodology as our baseline to compare the
performances of our proposed methods and adopt their ter-
minology of referring to the human operator as the pilot and
the assistive agent as the copilot. Much like our method,
(Reddy et al., 2018a) can also provide different levels of
assistance by tuning a hyperparameter, α, which is the toler-
ance of the system to suboptimal pilot actions. If q-values
of the user’s action is less than the threshold of the tolerance,
αq∗, the copilot will intervene. Comparing the q-values of
different actions limits the baseline method to value-based
methods which consequently makes it difficult to apply to
continuous action spaces.

4.1. Setup

Similar to (Reddy et al., 2018a), we design four agents
applying different strategies to simulate real human players
in the Lunar Lander environment to evaluate our methods:
Noop Pilot: does not apply any action (i.e. always executes
a noop action), Laggy Pilot: the optimal agent with 80%
possibility to repeat the previously executed action, Noisy
Pilot: the optimal agent with 25% possibility to take a
random action), and Sensor Pilot: simply tries to move
toward the landing site by firing its left or right engine and
does not use the main engine.

For each simulated pilot, we train the copilot using the base-
line method (Reddy et al., 2018a) and our proposed methods:
the penalty, budget, and penalty adapting methods. In order
to make our method more comparable with the baseline,
we use DDQN (Hasselt et al., 2016) with experience replay
(Lin, 1993) to train all the agents on Lunar Lander with
discrete action space. Our Q-network is a multi-layer per-
ceptron with two layers of 64 neurons in each layer. We use
the same method to train the optimal agent for the simulated
pilot.

For each method, we train copilots with their respective hy-
perparameters (tolerance, budget, penalty, and intervention
rate) which determine different levels of assistance. A de-
tailed listing of the hyperparameters used is located in Table
1. We train 10 copilots with different random seeds for each
parameter setting and test each over 100 episodes. Finally,
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Figure 2. The performance of different simulated pilots assisted by the copilots trained by (Reddy et al., 2018a) and our methods on Lunar
Lander. The dashed line represents the average performance of a simulated pilot without a copilot over 100 episodes. Other lines represent
the average performance of the corresponding agent for each of our methods.

we take the average performance of these 10 copilots for the
final results.

4.2. Evaluation

We evaluate the performance of our methods with respect
to increasing intervention rate. Figure 2 shows the trend
of total return at different intervention rates for individual
methods on Lunar Lander with discrete action space, re-
spectively. It is evident that our methods greatly improve
the performance of most pilots. Intuitively, as tolerance
threshold α and penalty λ decrease, or budget b and inter-
vention rate c′ increase, the copilot should intervene more
frequently and accumulate better reward. Although the hy-
perparameters are not shown in the figures, the appearance
of the data points are consistent with the value of the param-
eters. For example, data points with lower intervention rate
use a lower budget or use a higher penalty. So by tuning
the hyperparameters, the copilot can assist the pilot with a
different frequency of interventions, which means that the
both of the baseline method and our methods can provide
different levels of assistance to the user.

Next, we discuss the performance of different methods.
Since we aim to provide different levels of assistance to the
user, the most practical way for comparison is setting a tar-
get return, which is the user’s expectation, and assess which
method achieves the target return with a lower intervention
rate. Alternatively, from the perspective of intervention rate,
we can also form this comparison by setting a target inter-
vention rate, which is the level of assistance that the user
needs, and finding which method can achieve higher return.

Budget Method: Compared to other methods, the budget
method distributes more evenly across the intervention rate.
The intervention rate is always less than or equal to the ratio
of the budget and the total time steps. So if we keep increas-
ing the budget at a constant rate, the intervention rate will
not change dramatically. We note that this method performs
extremely poorly when assisting the laggy pilot. This is
due to the laggy pilot always taking significantly more time
steps to play the game compared to other simulated pilots.

As a result a larger budget is required to achieve better re-
turn. For the other three simulated pilots, the budget method
shows almost similar performance to baseline method and
worse than penalty and penalty adapting method.

Penalty Method: This method always achieves the op-
timal reward, which is about 200, with lowest interven-
tion rate among the other methods. But compared to the
other methods, the hyperparameter for this method is more
environment-dependent. We need to have a full understand-
ing of the reward function to chose an appropriate penalty.

Penalty Adapting Method: This method tends to demon-
strate high intervention rate and high reward regardless of
the hyperparameter configuration. Even when the copilot is
trained with low intervention rate, such as 0, 0.1 and 0.2, it
still accrues significantly higher reward than the single pilot.
Though the intervention rate serves as a constraint to limit
the behaviour of the copilot, it also guides the copilot when
to intervene. It encourages the copilot to intervene when the
current intervention rate is less than the constraint. This is
the key difference from the budget method, which does not
reward intervention. And when the benefit of intervening
is greater than the penalty, it will still choose to intervene
regardless of the constraint, which is why we refer to this
constraint as a soft constraint. Thus, the penalty adapting
method has comparatively high lower bound, even without
fine-tuning the intervention rate for the constraint. On the
other hand, it exposes the limitation of this method that it
cannot handle the case where the user wants very few inter-
ventions. Overall, it still has comparable performance with
the baseline method.

4.3. Analysis of Interventions

In having reviewed performances of individual proposed
methods, we discussed their efficiency i.e. how intervention
rate and target reward effect their ability to assist. We must
also assess whether the agents are meaningfully assisting
and intervening where necessary. In this contrast, we focus
on the states in which our individual methods are deciding
to intervene in.
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Figure 3. Heat maps which visualize the most frequently visited parts of the state space and where the interventions happen most frequently.
The plots in the first row show only the positions where interventions occurred. The second row shows the full trajectories of the pilot.
The intensity (legend) represents the percentage of time spent in that location and is normalized across all trials. Sensor pilot is used as the
simulated agent. The parameter we use to train the copilots are: α = 0.7 for the baseline, penalty = 5 for the penalty method, budget = 50
for the budget method and intervention rate = 0.7 for the penalty adapting method. Each method is run for 100 episodes.

Figure 3 uses heat maps to demonstrate at which (x, y)
positions in the Lunar Lander environment interventions
happen most frequently. For these experiments, we fixed
the landing zone, or the goal location, to be at the origin
of the frame. Additionally, we executed these experiments
using the sensor pilot as its behavior is the most intuitive
to visualize. When the x (horizontal) position of the agent
is less than -0.1, the lander is to the left of the goal and the
pilot fires its left engine to move right towards the goal. It
does the opposite when the x position is greater than 0.1, and
the pilot does nothing when it is between -0.1 and 0.1. Both
the penalty and penalty adapting methods perfectly capture
the strategy of the sensor pilot. Almost all the interventions
happen on both sides of the landing zone when the pilot
is firing its left or right engine. Few interventions happen
in the area when the pilot does not fire any engine (i.e. it
lands via gravity) and only when the lander is close to the
ground are interventions made to maintain balance. The
baseline method almost captures the strategy, but still makes
unnecessary interventions in the area where the agent does
nothing.

5. Conclusion
We proposed a framework for training human-in-the-loop
reinforcement learning agents with a focus on being able
to control the amount of interventions of the autonomous
agent. Our soft-constrained method allows a user to train

an agent "out of the box" with minimal hyperparameter tun-
ing. While our hard-constrained method provides a means
to train under an environment where after it violates any
constraint, it is not able to continue taking actions in the en-
vironment. We analyzed these methods on the Lunar Lander
game environments and showed that it outperformed a pre-
vious baseline. We also analyzed where interventions occur
with respect to the state space. We believe that shared auton-
omy with model-free RL is a promising direction to solving
this problem because it is able to leverage the wealth of
existing RL methods directly, while also giving flexibility to
incorporate many other constraints outside of interventions.
There is a large space of possible domains and different
user experiences to consider. We could potentially try to
leverage using real human data from video games and work
on implementing our method on a real game. We also wish
to test if our method is adaptable to a different distribution
of human behavior than at training time and determine if
means of goal inference are necessary.
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